Copositivity Detection of Tensors: Theory and Algorithm
نویسندگان
چکیده
منابع مشابه
An LP-based Algorithm to Test Copositivity
A symmetric matrix is called copositive if it generates a quadratic form taking no negative values over the nonnegative orthant, and the linear optimization problem over the set of copositive matrices is called the copositive programming problem. Recently, many studies have been done on the copositive programming problem (see, for example, [14, 5]). Among others, several branch and bound type a...
متن کاملahp algorithm and un-supervised clustering in auto insurance fraud detection
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
15 صفحه اولinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Copositivity detection by difference-of-convex decomposition and ω-subdivision
We present three new copositivity tests based upon difference-of-convex (d.c.) decompositions, and combine them to a branch-and-bound algorithm of ω-subdivision type. The tests employ LP or convex QP techniques, but also can be used heuristically using appropriate test points. We also discuss the selection of efficient d.c. decompositions and propose some preprocessing ideas based on the spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2017
ISSN: 0022-3239,1573-2878
DOI: 10.1007/s10957-017-1131-2